Step of Proof: comp_id_r |
12,41 |
|
Inference at * 1 1
Iof proof for Lemma comp id r:
1. A : Type
2. B : Type
3. f : A
B
(
x.f(x)) = f
by ((BackThruLemma `eta_conv`)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C),(first_nat 4:n)) (first_tok :t) inil_term)))
C.